skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bao, Jiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We studied laser-induced liquid indentations generated by the Marangoni effect. We showed experimental results along with the simulation model based on the lubrication theory. 
    more » « less
  2. null (Ed.)
  3. Photoacoustic laser streaming provides a versatile technique to manipulate liquids and their suspended objects with light. However, only gold was used in the initial demonstrations. In this work, we first demonstrate that laser streaming can be achieved with common non-plasmonic metals such as Fe and W by their ion implantations in transparent substrates. We then investigate the effects of ion dose, substrate material and thickness on the strength and duration of streaming. Finally, we vary laser pulse width, repetition rate and power to understand the observed threshold power for laser streaming. It is found that substrate thickness has a negligible effect on laser streaming down to 0.1 mm, glass and quartz produce much stronger streaming than sapphire because of their smaller thermal conductivity, while quartz exhibits the longest durability than glass and sapphire under the same laser intensity. Compared with Au, Fe and W with higher melting points show a longer lifetime although they require a higher laser intensity to achieve a similar speed of streaming. To generate a continuous laser streaming, the laser must have a minimum pulse repetition rate of 10 Hz and meet the minimum pulse width and energy to generate a transient vapor layer. This vapor layer enhances the generation of ultrasound waves, which are required for observable fluid jets. Principles of laser streaming and temperature simulation are used to explain these observations, and our study paves the way for further materials engineering and device design for strong and durable laser streaming. 
    more » « less
  4. null (Ed.)
  5. Flexible electronics and mechanically bendable devices based on Group III-N semiconductor materials are emerging; however, there are several challenges in manufacturing, such as cost reduction, device stability and flexibility, and device-performance improvement. To overcome these limitations, it is necessary to replace the brittle and expensive semiconductor wafers with single-crystalline flexible templates for a new-bandgap semiconductor platform. The substrates in the new concept of semiconductor materials have a hybrid structure consisting of a single-crystalline III-N thin film on a flexible metal tape substrate which provides a convenient and scalable roll-to-roll deposition process. We present a detailed study of a unique and simple direct epitaxial growth technique for crystallinity transformation to deliver single-crystalline GaN thin film with highly oriented grains along both a -axis and c -axis directions on a flexible and polycrystalline copper tape. A 2-dimensional (2D) graphene having the same atomic configuration as the (0001) basal plane of wurtzite structure is employed as a seed layer which plays a key role in following the III-N epitaxy growth. The DC reactive magnetron sputtering method is then applied to deposit an AlN layer under optimized conditions to achieve preferred-orientation growth. Finally, single-crystalline GaN layers (∼1 μm) are epitaxially grown using metal organic chemical vapor deposition (MOCVD) on the biaxially-textured buffer layer. The flexible single-crystalline GaN film obtained using this method provides a new way for a wide-bandgap semiconductor platform pursuing flexible, high-performance, and versatile device technology. 
    more » « less
  6. Liquid suspensions of carbon nanotubes, graphene and transition metal dichalcogenides have exhibited excellent performance in optical limiting. However, the underlying mechanism has remained elusive and is generally ascribed to their superior nonlinear optical properties such as nonlinear absorption or nonlinear scattering. Using graphene as an example, we show that photo-thermal microbubbles are responsible for optical limiting as strong light scattering centers: graphene sheets absorb incident light and become heated up above the boiling point of water, resulting in vapor and microbubble generation. This conclusion is based on the direct observation of bubbles above the laser beam as well as a strong correlation between laser-induced ultrasound and optical limiting. In situ Raman scattering of graphene further confirms that the temperature of graphene under laser pulses rises above the boiling point of water but still remains too low to vaporize graphene and create graphene plasma bubbles. Photo-thermal bubble scattering is not a nonlinear optical process and requires very low laser intensity. This understanding helps us to design more efficient optical limiting materials and understand the intrinsic nonlinear optical properties of nanomaterials. 
    more » « less